Developing widgets on Maemo 5
Juha Jarvi
Software designer

Foreca

MCCMOors



ForecaWeather widget for Maemo 5

_ .-",".-": 'I ?;’ -: i Lo
a s SRR LR
RN T NS
e ",'I?Q.-..E.: "%-*f'ﬂh -
+14°C Amsterdam

vy v

€05 T 484180 #14°C +13°C +16°C K
PR TR AT 21050 SRERE L g T O

R - Wed Thu ki Sat - 9%

. ' FORECA ~28

Lol

i,

-
s

MCCMOorG




Introduction

The talk is based on experiences from one Maemo 5 widget
Likely to apply to other Fremantle widgets
Our widget shows rarely changing location-based data
Nothing presented is the official opinion of Foreca or Nokia
No guarantees offered for correctness!

Everything will be on these slides, available for download later

MCCMOors



Graphic Design 1/4

Keep the widget small

Fit 3 widgets on one desktop, comfortably spaced
A plain design fits different themes better

Dark gray translucent background is used in many widgets
Use colors from the theme for text and other elements

Single-color symbols can be colored programmatically

MCCMOors




Graphic Design 2/4

Show only essential info
Use large graphics and fonts with short text

User should understand everything important at a glance
Leave space for translations in different languages!

Avoid multiple text columns, words may be very long

Text could expand 3 times from English version

%® ® ¥
0%0 0%/» 24

MCCMOors



Graphic Design 3/4

If the widget has buttons, make them large

Best if only thumbs are needed for use

Accidental clicks shouldn’t have annoying results
Avoid complicated interactive elements

Put controls in a separate dialog or fullscreen program

Whole widget can be like a button to open more content

%® ® ¥
0%0 0%/» 24

MCCMOors



Graphic Design 4/4

Separate fullscreen mode has many benefits
More controls can easily fit on the screen
Tabs and scrolling can be used to flip through information
Widget content can be shown even bigger for car use etc.
Allows more creative freedom for users and developers

Widget settings are easier to find than in desktop menu

MCCMOors




Architecture 1/5

Widgets are libraries loaded by the home screen application
They need to be written more carefully than other apps
Crashes are a worse experience than with full programs
Memory leaks can accumulate over many days
Draining the battery must be avoided

Moving complicated operations to a separate program is safer

MCCMOors



Architecture 2/5

Create a separate stand-alone fullscreen program
Crashes and hangs are easier for users to recover from
Complex features and processing are safer to implement
Debugging on a PC is simpler
Software is useful even if desktop is already full of widgets!

Problem is making the parts communicate

MCCMOors



Architecture 3/5

Having a widget and a fullscreen part introduces problems
Settings changes in either one should affect the other
D-BUS message sent to the full program launches it
System events are easier to receive in a stand-alone app
Network transfers must work with just one part present

Both parts together also need to be synchronized

MCCMOors




Architecture 4/5

Messaging issues are solved by a third, background program
Let’s call it “controller”

Widget and fullscreen program message it when started
Controller is then started by D-BUS if not running

Keeps track of which of the other parts are running

Propagates messages from one to the other

Handles network transfers and system events

MCCMOors




Architecture 5/5

Design the architecture for stability and low power usage
Pay special attention to the widget and controller
Keep their source code simple
Small enough to read through before important releases
Carefully verify they can’t hang or crash
As a general rule they should always be idle

Fullscreen program is less critical

MCCMOors




Widget 1/1

Widget on its own can simply stay in GTK main loop

Only reacts to mouse events or D-BUS messages
Everything is handled in small simple subroutines

No timers or anything that runs a long time

Have the controller do any online data retrieval

Foreca’s widget is under 2k total lines of C

Only uses D-BUS, GTK and Hildon libs

MCCMOors




Controller 1/4

Controller waits for messages in GLib main loop

Listens to system sleep events to stop all activity

Possibly tracks network connection and GPS status changes
Use ACWP instead of GPS or turn it on only briefly!

One timer can be running to fetch data updates or similar

Activating only every 30 minutes or less frequently

Turned off if the device goes to sleep

MCCMOors




Controller 2/4

Automatically updates data from the network only if:
Device woke up, got online or other event occurred
AND the current data is invalid
Over 30 minutes old or user chose to view new data
If updating based on location, user moved by several km

AND the screen is on and program is visible on screen

MCCMOors



Controller 3/4

Splitting activities into helper programs can go further

Simple to write and test a program to do one HTTP download
Handling many simultaneously takes more effort
Also third-party libraries can get unstable over time

Same goes for any input/output that isn’t a constant stream
Just wait forever until all data has arrived, blocking 10

Controller simply needs to start and manage the helpers

MCEMOoRe &

%L® e
& &%




Controller 4/4

Controller forks and executes helper programs, uses pipes
A list is kept of all running helpers
Special timer fires every second while any are running

If one has been running too long, kill it

If device goes to sleep, kill them all!

When a helper finishes, send results over D-BUS

Timer stops when all have finished

MCCMOors




Benefits 1/2

The multiple processes may sound like wasting resources
However this isn't an application program or web browser
Widgets should transfer little data very rarely
Most of the time helpers are not running
The widget is less complex and uses less resources!

Foreca’s controller is under 1k lines of C

MCCMOors



Benefits 2/2

User experience is also improved by the modular design
Device memory usage is lower
Less problems from hangs or crashes
The user interface isn’t affected
Code for the small modules is verifiable by reading

Few interactions between parallel processes help testing

7@

&

&) €%

MCCMOors



Implementation 1/2

The current API requires using C on some level
For rapid development of many widgets there are better tools
Lua is a good recommendable scripting language
We have written bindings for Diablo widgets
Straightforward to use, little extra C code needed (2k lines)

Binary is about 100k, even widget graphics take more space

MCCMOors



Implementation 2/2

More controversially, avoid Autoconf
5k lines of C and 30k lines of scripts to compile it = wrong

Write a makefile for the widget project manually

It's only a couple dozen lines and only needs to call gcc
Keep it simple: if you want to port, plan for a partial rewrite
A widget is mainly Ul and every device has a new Ul style

Widget sources don’t need to compile for several devices

4 &
MCESMO.ora QA2




Testing 1/4

Test constantly on the device itself if possible
Gives more reliable results of real-world behavior
A script on the device can download new binary files
Two key presses after every build, or automated with SSH
Force widget reload by deleting and restoring config entry
It’s inside ~/.config/hildon-desktop/home.plugins

(Done in the controller also works for widget resizing)

4 &
MCESMO.ora QA2




Testing 2/4

Types of tests to use reqgularly:
Smoke test after every build (does it still run on the device)
Automatic test cases for controller and its helpers
Ask next person you see to try out the user interface
Remember to switch locales
For fullscreen program setting LC_* in xterm is enough

Get a draft German translation early, long words there!

4 &
MCESMO.ora QA2




Testing 3/4

Special for a mobile/embedded device, test power usage!
Along with not crashing, this is top priority for a widget

Run “powertop -t60” on device

Need to be root, install rootsh package first
Execute a planned 60-second test

Check total wakeups

MCCMOors



Testing 4/4

Test and compare different power usage scenarios
Widget on desktop or not in use
Device online using WLAN or 3G
GPS enabled or disabled if relevant
Flip the device lock side switch to sleep for some seconds
Other widgets or apps present using the same services

Widget must not cause extra wakeups without good reason!

4 &
MCESMO.ora QA2




Summary

Keep widget small and text easy to read
Put complex features in a separate program
Split code into short independent processes

Carefully test stability and power usage

MCCMOors



Thanks!

Questions or comments?

MCCMOorG



